15 research outputs found

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    COST292 experimental framework for TRECVID 2008

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs and several descriptors. The third system uses three image classifiers based on ant colony optimisation, particle swarm optimisation and a multi-objective learning algorithm. The fourth system uses a Gaussian model for singing detection and a person detection algorithm. The search task is based on an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. The rushes task submission is based on a spectral clustering approach for removing similar scenes based on eigenvalues of frame similarity matrix and and a redundancy removal strategy which depends on semantic features extraction such as camera motion and faces. Finally, the submission to the copy detection task is conducted by two different systems. The first system consists of a video module and an audio module. The second system is based on mid-level features that are related to the temporal structure of videos

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a “bag of subregions”. The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a "bag of subregions". The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators' energy production

    Get PDF
    Renewable energies are the alternative that leads to a cleaner generation and a reduction in CO2 emissions. However, their dependency on weather makes them unreliable. Traditional energy operators need a highly accurate estimation of energy to ensure the appropriate control of the network, since energy generation and demand must be balanced. This paper proposes a forecaster to predict solar irradiation, for very short-term, specifically, in the 10 min ahead. This study develops two tools based on artificial neural networks, namely Long-Short Term Memory neural networks and Convolutional Neural Network. The results demonstrate that the Convolutional Neural Network has a higher accuracy. The tool is tested examining the root mean square error, which was of 52.58 W/m2 for the testing step. Compared against the benchmark, it has obtained an improvement of 8.16%. Additionally, for the 82% of the tested days it has given a less than 4% error between the predicted and the actual energy generation. Results indicate that the forecaster is accurate enough to be implemented on a photovoltaic generation plan, improving their integration into the electrical grid, not only for providing power but also ancillary services

    An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators' energy production

    No full text
    Renewable energies are the alternative that leads to a cleaner generation and a reduction in CO2 emissions. However, their dependency on weather makes them unreliable. Traditional energy operators need a highly accurate estimation of energy to ensure the appropriate control of the network, since energy generation and demand must be balanced. This paper proposes a forecaster to predict solar irradiation, for very short-term, specifically, in the 10 min ahead. This study develops two tools based on artificial neural networks, namely Long-Short Term Memory neural networks and Convolutional Neural Network. The results demonstrate that the Convolutional Neural Network has a higher accuracy. The tool is tested examining the root mean square error, which was of 52.58 W/m2 for the testing step. Compared against the benchmark, it has obtained an improvement of 8.16%. Additionally, for the 82% of the tested days it has given a less than 4% error between the predicted and the actual energy generation. Results indicate that the forecaster is accurate enough to be implemented on a photovoltaic generation plan, improving their integration into the electrical grid, not only for providing power but also ancillary services

    Fighting Volume Crime : an Intelligent, Scalable, and Low Cost Approach

    No full text
    Volume Crimes (aka petty crimes) take place on a daily basis affecting citizens, local communities, as well as business and infrastructure owners. In this paper, we present a novel intelligent surveillance solution (P-REACT) that integrates video and audio analytics both on-site (using an embedded platform connected to local sensors) and centrally on a cloud service. This intelligent surveillance system has been conceived and designed to anticipate volume crimes in areas where video surveillance is allowed by current legislation and more specifically in shops and public transportation systems; intended as a modular and low cost solution. The capability of dynamically adapting the analytic algorithms that are performed on-site provides a more accurate detection of crime evidences

    MICHE Competitions: A Realistic Experience with Uncontrolled Eye Region Acquisition

    No full text
    People struggle every day with authentication to access a protected service or location, or simply aimed at protecting one’s own devices. This spurs a growing demand for self-handled authentication strategies. The increasing number of remote services of various kinds corresponds to an increasing number of passwords to use and remember, and also to the growth of the password theft risk, due to the increasing value of the protected resources. The other core element in present authentication scenarios is the ubiquity of mobile equipment. Smartphones add a “whatever” dimension to the possible uses of the mobile devices whenever and wherever that include storing/transferring multimedia information, often personal and often sensitive. Biometrics can both enforce and simplify authentication in controlled environments. Mobile biometrics in uncontrolled settings, where there is no operator to guide the capture of a “good-quality” sample on a mobile device, is the new frontier for secure use of data and services. The iris is among the best candidates for biometric recognition. It is extremely discriminative: Right and left irises of the same person are so different to hinder a correct matching, because randotypic elements largely overcome genotypic ones in individual development. However, self-acquired samples often suffer from poor quality, due, e.g., to reflections, motion blurring, out of focus, or bad image framing. Mobile setting and especially the inherent problems related to uncontrolled iris image acquisition are addressed in the two challenges of the MICHE project, whose results are the core topic of this chapter
    corecore